Parametric Binomial (Source Code):
x = 0
while true:
x = x + 1 {p} x
end
Program features | Value | Dependency Graph |
---|---|---|
if statements | No | (L) Linear (NL) nonlinear |
State space | infinite, discrete | |
Circular Dependency | No | |
Symbolic Constants | Yes (p) | |
Effective Variables | Yes (x) | |
Defective Variables | No |
Computing the first moment for the random variable x using POLAR:
python polar.py benchmarks/old/binomial --goals "E(x)"
8888888b. .d88888b. 888 d8888 8888888b.
888 Y88b d88P" "Y88b 888 d88888 888 Y88b
888 888 888 888 888 d88P888 888 888
888 d88P 888 888 888 d88P 888 888 d88P
8888888P" 888 888 888 d88P 888 8888888P"
888 888 888 888 d88P 888 888 T88b
888 Y88b. .d88P 888 d8888888888 888 T88b
888 "Y88888P" 88888888 d88P 888 888 T88b
By the ProbInG group
-------------------
- Analysis Result -
-------------------
E(x) = 0; n*p
Solution is exact
Elapsed time: 0.3568592071533203 s
Solution for first moment: \[\mathbb{E} (x_n) = n p\]
Computing the second moment for the random variable x using POLAR:
python polar.py benchmarks/old/binomial --goals "E(x^2)"
8888888b. .d88888b. 888 d8888 8888888b.
888 Y88b d88P" "Y88b 888 d88888 888 Y88b
888 888 888 888 888 d88P888 888 888
888 d88P 888 888 888 d88P 888 888 d88P
8888888P" 888 888 888 d88P 888 8888888P"
888 888 888 888 d88P 888 888 T88b
888 Y88b. .d88P 888 d8888888888 888 T88b
888 "Y88888P" 88888888 d88P 888 888 T88b
By the ProbInG group
-------------------
- Analysis Result -
-------------------
E(x**2) = 0; n*p*(p*(n - 1) + 1)
Solution is exact
Elapsed time: 0.4016072750091553 s
Solution for the second moment: \[\mathbb{E} (x_n^2) = n p (p (n - 1) + 1)\]
Computing the third moment for the random variable x using POLAR:
python polar.py benchmarks/old/binomial --goals "E(x^3)"
8888888b. .d88888b. 888 d8888 8888888b.
888 Y88b d88P" "Y88b 888 d88888 888 Y88b
888 888 888 888 888 d88P888 888 888
888 d88P 888 888 888 d88P 888 888 d88P
8888888P" 888 888 888 d88P 888 8888888P"
888 888 888 888 d88P 888 888 T88b
888 Y88b. .d88P 888 d8888888888 888 T88b
888 "Y88888P" 88888888 d88P 888 888 T88b
By the ProbInG group
-------------------
- Analysis Result -
-------------------
E(x**3) = 0; n*p*(n**2*p**2 - 3*n*p**2 + 3*n*p + 2*p**2 - 3*p + 1)
Solution is exact
Elapsed time: 0.5916872024536133 s
Solution for the third moment: \[\mathbb{E} (x_n^3) = n p (n^2 p^2 - 3 n p^2 + 3 n p + 2p^2 - 3p + 1)\]
Computing the fourth moment for the random variable x using POLAR:
python polar.py benchmarks/old/binomial --goals "E(x^4)"
8888888b. .d88888b. 888 d8888 8888888b.
888 Y88b d88P" "Y88b 888 d88888 888 Y88b
888 888 888 888 888 d88P888 888 888
888 d88P 888 888 888 d88P 888 888 d88P
8888888P" 888 888 888 d88P 888 8888888P"
888 888 888 888 d88P 888 888 T88b
888 Y88b. .d88P 888 d8888888888 888 T88b
888 "Y88888P" 88888888 d88P 888 888 T88b
By the ProbInG group
-------------------
- Analysis Result -
-------------------
E(x**4) = 0; n*p*(n**3*p**3 - 6*n**2*p**3 + 6*n**2*p**2 + 11*n*p**3 - 18*n*p**2 + 7*n*p - 6*p**3 + 12*p**2 - 7*p + 1)
Solution is exact
Elapsed time: 0.7818460464477539 s
Solution for the fourth moment: \[\mathbb{E} (x_n^4) = n p (n^3 p^3 - 6 n^2 p^3 + 6 n^2 p^2 + 11 n p^3 - 18 n p^2 + 7 n p - 6 p^3 + 12 p^2 - 7 p + 1)\]
Program simulation:
Parameter | Current Value | Tuning |
---|---|---|
Number of program executions: | ||
Number of loop iterations (n): | ||
Probability (p): |
Exact E(x) | Approx. E(x) | Exact E(x2) | Approx. E(x2) |
---|---|---|---|
Exact E(x3) | Approx. E(x3) | Exact E(x4) | Approx. E(x4) |
---|---|---|---|